

UFO Tasks Reference

Getting started

	Installation

Reference

	Generators
	File reader

	Memory reader

	ZeroMQ subscriber

	UcaCamera reader

	stdin reader

	Metaball simulation

	Data generation

	Filters
	Point-based transformation

	Spatial transformation

	Multi-stream

	Filters

	Stream transformations

	Fourier domain

	Reconstruction

	General matrix-matrix multiplication

	Segmentation

	Auxiliary

	Sinks
	File writer

	Memory writer

	ZeroMQ publisher

	Auxiliary sink

	Null

	PIV filters
	Ring pattern

	Concatenate

	Denoise

	Contrast

	Ordfilt

	Particle filtering

	OpenCL default kernels

	OpenCL reduction default kernels

	Third party contributions
	Filters

Examples

	Examples
	CT Pre-processing

	CT Reconstruction

	Data distribution

Additional notes

	ChangeLog
	Version 0.16.0

	Version 0.15.1

	Version 0.15.0

	Version 0.14.1

	Version 0.14.0

	Version 0.13.0

	Version 0.12.0

	Version 0.11.1

	Version 0.11.0

	Version 0.10.0

	Version 0.9.0

	Version 0.8.0

	Version 0.7.0

	Version 0.6.0

	Copyright

Installation

Prior to building the filter suite you have to install the base library ufo-core
as well as all task-specific dependencies (e.g. libtiff for read
and write). Once installed you can check out the source with:

$ git clone https://github.com/ufo-kit/ufo-filters

Configure the build with:

$ cd <source-path>
$ cmake .

Installation paths can be customized by passing configure equivalents like
so:

$ cmake . -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_LIBDIR=/usr/lib64

Now build and install the filters with:

$ make && make install

Depending on the installation location, the second step requires administration
rights.

Generators

Generators produce data and have at least one output but no input.

File reader

	
 class read

	The reader loads single files from disk to produce a stream of
two-dimensional data items. Supported file types depend on the compiled
plugin. Raw (.raw) and EDF (.edf) files can always be read without
additional support. Additionally, loading TIFF (.tif and .tiff) and HDF5
(.h5) files might be supported.

The nominal resolution can be decreased by specifying the y
coordinate and a height. Due to reduced I/O, this can
dramatically improve performance.

	
"path": string

	Glob-style pattern that describes the file path. For HDF5 files this
must point to a file and a data set separated by a colon, e.g.
/path/to/file.h5:/my/data/set.

	
"number": uint

	Number of files to read.

	
"start": uint

	First index from where files are read.

	
"step": uint

	Number of files to skip.

	
"y": uint

	Vertical coordinate from where to start reading.

	
"height": uint

	Height of the region that is read from the image.

	
"y-step": uint

	Read every y-step row.

	
"convert": boolean

	Convert input data to float elements, enabled by default.

	
"raw-width": uint

	Specifies the width of raw files.

	
"raw-height": uint

	Specifies the height of raw files.

	
"raw-bitdepth": uint

	Specifies the bit depth of raw files.

	
"raw-pre-offset": ulong

	Offset that is skipped before reading the next frame from the current file.

	
"raw-post-offset": ulong

	Offset that is skipped after reading the last frame from the current file.

	
"type": enum

	Overrides the type detection that is based on the file extension. For
example, to load .foo files as raw files, set the type property to
raw.

	
"retries": uint

	Set the number of retries in case files do not exist yet and are being
written. If you set this, you must also set number otherwise you
would have to wait basically forever for the execution to finish. Note,
that only files are considered which come after the last successful
filename.

	
"retry-timeout": uint

	Seconds to wait before reading new files.

Memory reader

	
 class memory-in

	Reads data from a pre-allocated memory region. Unlike input and output tasks
this can be used to interface with other code more directly, e.g. to read
from a NumPy buffer:

from gi.repository import Ufo
import numpy as np
import tifffile

ref = np.random.random((512, 512)).astype(np.float32)

pm = Ufo.PluginManager()
g = Ufo.TaskGraph()
sched = Ufo.Scheduler()
read = pm.get_task('memory-in')
write = pm.get_task('write')

read.props.pointer = ref.__array_interface__['data'][0]
read.props.width = ref.shape[1]
read.props.height = ref.shape[0]
read.props.number = 1

write.props.filename = 'out.tif'

g.connect_nodes(read, write)
sched.run(g)

out = tifffile.imread('out.tif')
assert np.sum(out - ref) == 0.0

	
"pointer": ulong

	Pointer to pre-allocated memory.

	
"width": uint

	Specifies the width of input.

	
"height": uint

	Specifies the height of input.

	
"number": uint

	Specifies the number of items to read.

ZeroMQ subscriber

	
 class zmq-sub

	Generates a stream from a compatible ZeroMQ data stream, for example
published by the zmq-pub task.

	
"address": string

	Host address of the ZeroMQ publisher. Note, that as of now the publisher
binds to a tcp endpoint, thus you have to use that as well. By
default, the address is set to the local host address 127.0.0.1.

UcaCamera reader

	
 class camera

	The camera task uses libuca [https://github.com/ufo-kit/libuca] to read frames from a connected camera and
provides them as a stream.

When name is provided, the corresponding plugin is instantiated
by the camera task itself. However, an already configured UcaCamera object
can also be passed via camera.

	
"name": string

	Name of the camera that is used.

	
"number": uint

	Number of frames that are recorded.

	
"properties": string

	Property string, i.e. roi-width=512 exposure-time=0.1.

Note

This requires third-party library libuca.

stdin reader

	
 class stdin

	Reads data from stdin to produce a valid data stream. width,
height and bitdepth must be set correctly to
ensure correctly sized data items.

	
"width": uint

	Specifies the width of input.

	
"height": uint

	Specifies the height of input.

	
"bitdepth": uint

	Specifies the bit depth of input.

	
"convert": boolean

	Convert input data types to float, enabled by default.

Metaball simulation

	
 class metaballs

	Generate animated meta balls. In each time step the meta balls move by a
random velocity.

	
"width": uint

	Width of output data stream.

	
"height": uint

	Height of output data stream.

	
"number-balls": uint

	Number of meta balls.

	
"number": uint

	Length of data stream.

Data generation

	
 class dummy-data

	Only asks for image data sized width times height
times depth and forwards number of them to the
next filter. The data is never touched if init is not set, thus
it might be suitable for performance measurements.

	
"width": uint

	Width of image data stream.

	
"height": uint

	Height of image data stream.

	
"depth": uint

	Depth of image data stream.

	
"number": uint

	Number of images to produce.

	
"init": float

	Value to initialize the output buffer.

Filters

Filters transform data and have at least one input and one output.

Point-based transformation

Binarization

	
 class binarize

	Binarizes an image.

	
"threshold": float

	Any values above the threshold are set to one all others to zero.

Clipping

	
 class clip

	Clip input to set minimum and maximum value.

	
"min": float

	Minimum value, all values lower than min are set to min.

	
"max": float

	Maximum value, all values higher than max are set to max.

Masking

	
 class mask

	Mask the circular outer region by setting values to zero.

Arithmetic expressions

	
 class calculate

	Calculate an arithmetic expression. You have access to the value stored in
the input buffer via the v letter in expression and to the
index of v via letter x. Please be aware that v is a floating point
number while x is an integer. This is useful if you have multidimensional
data and want to address only one dimension. Let’s say the input is two
dimensional, 256 pixels wide and you want to fill the x-coordinate with x
for all respective y-coordinates (a gradient in x-direction). Then you can
write expression=”x % 256”. Another example is the sinc function which
you would calculate as expression=”sin(v) / x” for 1D input.
For more complex math or other operations please consider using
OpenCL.

	
"expression": string

	Arithmetic expression with math functions supported by OpenCL.

Statistics

	
 class measure

	Measure basic image properties.

	
"metric": string

	Metric, one of min, max, sum, mean, var, std,
skew or kurtosis.

	
"axis": int

	Along which axis to measure (-1, all).

Generic OpenCL

	
 class opencl

	Load an arbitrary OpenCL kernel from filename or
source and execute it on each input. The kernel must accept as
many global float array parameters as connected to the filter and one
additional as an output. For example, to compute the difference between two
images, the kernel would look like:

kernel void difference (global float *a, global float *b, global float *c)
{
 size_t idx = get_global_id (1) * get_global_size (0) + get_global_id (0);
 c[idx] = a[idx] - b[idx];
}

and could be used like so if defined in a file named diff.cl:

$ ufo-launch [read, read] ! opencl kernel=difference filename=diff.cl ! null

If filename is not set, a default kernel file (opencl.cl)
is loaded. See OpenCL default kernels for a list of kernel names
defined in that file.

	
"filename": string

	Filename with kernel sources to load.

	
"source": string

	String with OpenCL kernel code.

	
"kernel": string

	Name of the kernel that this filter is associated with.

	
"options": string

	OpenCL build options.

	
"dimensions": uint

	Number of dimensions the kernel works on. Must be in [1, 3].

Spatial transformation

Transposition

	
 class transpose

	Transpose images from (x, y) to (y, x).

Rotation

	
 class rotate

	Rotates images clockwise by an angle around a center
(x, y). When reshape is True, the rotated image is not
cropped, i.e. the output image size can be larger that the input size.
Moreover, this mode makes sure that the original coordinates of the input are
all contained in the output so that it is easier to see the rotation in the
output. Try e.g. rotation with center equal to \((0, 0)\) and
angle \(\pi / 2\).

	
"angle": float

	Rotation angle in radians.

	
"reshape": boolean

	Reshape the result to encompass the complete input image and input
indices.

	
"center": GValueArray

	Center of rotation (x, y)

	
"addressing-mode": enum

	Addressing mode specifies the behavior for pixels falling outside the
original image. See OpenCL sampler_t documentation for more information.

	
"interpolation": enum

	Specifies interpolation when a computed pixel coordinate falls between
pixels, can be nearest or linear.

Flipping

	
 class flip

	Flips images vertically or horizontally.

	
"direction": enum

	Can be either horizontal or vertical and denotes the direction along
with the image is flipped.

Binning

	
 class bin

	Bin a square of pixels by summing their values.

	
"size": uint

	Number of pixels in one direction to bin to a single pixel value.

Rescaling

	
 class rescale

	Rescale input data by a fixed factor.

	
"factor": float

	Fixed factor for scaling the input in both directions.

	
"x-factor": float

	Fixed factor for scaling the input width.

	
"y-factor": float

	Fixed factor for scaling the input height.

	
"width": uint

	Fixed width, disabling scalar rescaling.

	
"height": uint

	Fixed height, disabling scalar rescaling.

	
"interpolation": enum

	Interpolation method used for rescaling which can be either nearest or linear.

Padding

	
 class pad

	Pad an image to some extent with specific behavior for pixels falling
outside the original image.

	
"x": int

	Horizontal coordinate in the output image which will contain the first
input column.

	
"y": int

	Vertical coordinate in the output image which will contain the first
input row.

	
"width": uint

	Width of the padded image.

	
"height": uint

	Height of the padded image.

	
"addressing-mode": enum

	Addressing mode specifies the behavior for pixels falling outside the
original image. See OpenCL sampler_t documentation for more information.

Cropping

	
 class crop

	Crop a region of interest from two-dimensional input. If the region is
(partially) outside the input, only accessible data will be copied.

	
"x": uint

	Horizontal coordinate from where to start the ROI.

	
"y": uint

	Vertical coordinate from where to start the ROI.

	
"width": uint

	Width of the region of interest.

	
"height": uint

	Height of the region of interest.

	
"from-center": boolean

	Start cropping from the center outwards.

Cutting

	
 class cut

	Cuts a region from the input and merges the two halves together. In a way,
it is the opposite of crop.

	
"width": uint

	Width of the region to cut out.

Tiling

	
 class tile

	Cuts input into multiple tiles. The stream contains tiles in a zig-zag
pattern, i.e. the first tile starts at the top left corner of the input goes
on the same row until the end and continues on the first tile of the next
row until the final tile in the lower right corner.

	
"width": uint

	Width of a tile which must be a divisor of the input width. If this is
not changed, the full width will be used.

	
"height": uint

	Width of a tile which must be a divisor of the input height. If this is
not changed, the full height will be used.

Swapping quadrants

	
 class swap-quadrants

	Cuts the input into four quadrants and swaps the lower right with the upper
left and the lower left with the upper right quadrant.

Polar transformation

	
 class polar-coordinates

	Transformation between polar and cartesian coordinate systems.

When transforming from cartesian to polar coordinates the origin is in the
image center (width / 2, height / 2). When
transforming from polar to cartesian coordinates the origin is in the image
corner (0, 0).

	
"width": uint

	Final width after transformation.

	
"height": uint

	Final height after transformation.

	
"direction": string

	Conversion direction from polar_to_cartesian.

Stitching

	
 class stitch

	Stitches two images horizontally based on their relative given
shift, which indicates how much is the second image shifted
with respect to the first one, i.e. there is an overlapping region given by
\(first_width - shift\). First image is inserted to the stitched image
from its left edge and the second image is inserted after the overlapping
region. If shift is negative, the two images are swapped and stitched as
described above with shift made positive.

If you are stitching a 360-degree off-centered tomographic data set and
know the axis of rotation, shift can be computed as \(2axis -
second_width\) for the case the axis of rotation is greater than half of the
first image. If it is less, then the shift is \(first_width - 2 axis\).
Moreover, you need to horizontally flip one of the images because this task
expects images which can be stitched directly, without additional needed
transformations.

Stitching requires two inputs. If you want to stitch a 360-degree
off-centered tomographic data set you can use:

ufo-launch [read path=projections_left/, read path=projections_right/ ! flip direction=horizontal] ! stitch shift=N ! write filename=foo.tif

	
"shift": int

	How much is second image shifted with respect to the first one. For
example, shift 0 means that both images overlap perfectly and the
stitching doesn’t actually broaden the image. Shift corresponding to
image width makes for a stitched image with twice the width of the
respective images (if they have equal width).

	
"adjust-mean": boolean

	Compute the mean of the overlapping region in the two images and adjust
the second image to match the mean of the first one.

	
"blend": boolean

	Linearly interpolate between the two images in the overlapping region.

Multi-stream

Interpolation

	
 class interpolate

	Interpolates incoming data from two compatible streams, i.e. the task
computes \((1 - \alpha) s_1 + \alpha s_2\) where \(s_1\) and
\(s_2\) are the two input streams and \(\alpha\) a blend factor.
\(\alpha\) is \(i / (n - 1)\) for \(n > 1\), \(n\) being
number and \(i\) the current iteration.

	
"number": uint

	Number of total output stream length.

	
 class interpolate-stream

	Interpolates between elements from an incoming stream.

	
"number": uint

	Number of total output stream length.

Subtract

	
 class subtract

	Subtract data items of the second from the first stream.

Correlate

	
 class correlate-stacks

	Reads two datastreams, the first must provide a 3D stack of images that is
used to correlate individal 2D images from the second datastream. The
number property must contain the expected number of items in the second
stream.

	
"number": uint

	Number of data items in the second data stream.

Filters

Median

	
 class median-filter

	Filters input with a simple median.

	
"size": uint

	Odd-numbered size of the neighbouring window.

Edge detection

	
 class detect-edge

	Detect edges by computing the power gradient image using different edge
filters.

	
"filter": enum

	Edge filter (or operator) which is one of sobel, laplace and
prewitt. By default, the sobel operator is used.

Gaussian blur

	
 class blur

	Blur image with a gaussian kernel.

	
"size": uint

	Size of the kernel.

	
"sigma": float

	Sigma of the kernel.

Gradient

	
 class gradient

	Compute gradient.

	
"direction": enum

	Direction of the gradient, can be either horizontal, vertical,
both or both_abs.

Stream transformations

Averaging

	
 class average

	Read in full data stream and generate an averaged output.

	
"number": uint

	Number of averaged images to output. By default one image is generated.

Reducing with OpenCL

	
 class opencl-reduce

	Reduces or folds the input stream using a generic OpenCL kernel by loading
an arbitrary kernel from filename or
source. The kernel must accept exactly two global float arrays,
one for the input and one for the output. Additionally a second
finish kernel can be specified which is called once when the
processing finished. This kernel must have two arguments as well, the global
float array and an unsigned integer count. Folding (i.e. setting the initial
data to a known value) is enabled by setting the fold-value.

Here is an OpenCL example how to compute the average:

kernel void sum (global float *in, global float *out)
{
 size_t idx = get_global_id (1) * get_global_size (0) + get_global_id (0);
 out[idx] += in[idx];
}

kernel void divide (global float *out, uint count)
{
 size_t idx = get_global_id (1) * get_global_size (0) + get_global_id (0);
 out[idx] /= count;
}

And this is how you would use it with ufo-launch:

ufo-launch ... ! opencl-reduce kernel=sum finish=divide ! ...

If filename is not set, a default kernel file is loaded. See
OpenCL reduction default kernels for a list of possible kernels.

	
"filename": string

	Filename with kernel sources to load.

	
"source": string

	String with OpenCL kernel code.

	
"kernel": string

	Name of the kernel that is called on each iteration. Must have two
global float array arguments, the first being the input, the second the
output.

	
"finish": string

	Name of the kernel that is called at the end after all iterations. Must
have a global float array and an unsigned integer arguments, the first
being the data, the second the iteration counter.

	
"fold-value": float

	If given, the initial data is filled with this value, otherwise the
first input element is used.

	
"dimensions": uint

	Number of dimensions the kernel works on. Must be in [1, 3].

Statistics

	
 class flatten

	Flatten input stream by reducing with operation based on the given mode.

	
"mode": string

	Operation, can be either min, max, sum and median.

	
 class flatten-inplace

	Faster inplace operating variant of the flatten task.

	
"mode": enum

	Operation, can be either min, max and sum.

Slicing

	
 class slice

	Slices a three-dimensional input buffer to two-dimensional slices.

Stacking

	
 class stack

	Symmetrical to the slice filter, the stack filter stacks two-dimensional
input.

	
"number": uint

	Number of items, i.e. the length of the third dimension.

Merging

	
 class merge

	Merges the data from two or more input data streams into a single data
stream by concatenation.

	
"number": uint

	Number of input streams. By default this is two.

Slice mapping

	
 class map-slice

	Lays out input images on a quadratic grid. If the number of
input elements is not the square of some integer value, the next higher
number is chosen and the remaining data is blackened.

	
"number": uint

	Number of expected input elements. If more elements are sent to the
mapper, warnings are issued.

Color mapping

	
 class map-color

	Receives a two-dimensional image and maps its gray values to three red,
green and blue color channels using the Viridis color map.

Splitting channels

	
 class unsplit

	Turns a three-dimensional image into two-dimensional image by interleaving
the third dimension, i.e. [[[XXX],[YYY],[ZZZ]]] is turned into
[[XYZ],[XYZ],[XYZ]]. This is useful to merge a separate multi-channel RGB
image into a “regular” RGB image that can be shown with cv-show.

This task adds the channels key to the output buffer containing the
original depth of the input buffer.

Fourier domain

Fast Fourier transform

	
 class fft

	Compute the Fourier spectrum of input data. If dimensions is one
but the input data is 2-dimensional, the 1-D FFT is computed for each row.

	
"auto-zeropadding": boolean

	Automatically zeropad input data to a size to the next power of 2.

	
"dimensions": uint

	Number of dimensions in [1, 3].

	
"size-x": uint

	Size of FFT transform in x-direction.

	
"size-y": uint

	Size of FFT transform in y-direction.

	
"size-z": uint

	Size of FFT transform in z-direction.

	
 class ifft

	Compute the inverse Fourier of spectral input data. If
dimensions is one but the input data is 2-dimensional, the 1-D
FFT is computed for each row.

	
"dimensions": uint

	Number of dimensions in [1, 3].

	
"crop-width": int

	Width to crop output.

	
"crop-height": int

	Height to crop output.

Frequency filtering

	
 class filter

	Computes a frequency filter function and multiplies it with its input,
effectively attenuating certain frequencies.

	
"filter ": enum

	Any of ramp, ramp-fromreal, butterworth, faris-byer,
hamming and bh3 (Blackman-Harris-3). The default filter is
ramp-fromreal which computes a correct ramp filter avoiding offset
issues encountered with naive implementations.

	
"scale": float

	Arbitrary scale that is multiplied to each frequency component.

	
"cutoff": float

	Cutoff frequency of the Butterworth filter.

	
"order": float

	Order of the Butterworth filter.

	
"tau": float

	Tau parameter of Faris-Byer filter.

	
"theta": float

	Theta parameter of Faris-Byer filter.

1D stripe filtering

	
 class filter-stripes1d

	Filter stripes in 1D along the x-axis. The input and output are in frequency
domain. The filter multiplies the frequencies with an inverse Gaussian
profile centered at 0 frequency. The inversed profile means that the filter
is f(k) = 1 - gauss(k) in order to suppress the low frequencies.

	
"strength": float

	Filter strength, which is the full width at half maximum of the
gaussian.

Zeropadding

	
 class zeropad

	Add zeros in the center of sinogram using oversampling
to manage the amount of zeros which will be added.

	
"oversampling": uint

	Oversampling coefficient.

	
"center-of-rotation": float

	Center of rotation of sample.

Reconstruction

Flat-field correction

	
 class flat-field-correct

	Computes the flat field correction using three data streams:

	Projection data on input 0

	Dark field data on input 1

	Flat field data on input 2

	
"absorption-correct": boolean

	If TRUE, compute the negative natural logarithm of the
flat-corrected data.

	
"fix-nan-and-inf": boolean

	If TRUE, replace all resulting NANs and INFs with zeros.

	
"sinogram-input": boolean

	If TRUE, correct only one line (the sinogram), thus darks are flats are 1D.

	
"dark-scale": float

	Scale the dark field prior to the flat field correct.

Sinogram transposition

	
 class transpose-projections

	Read a stream of two-dimensional projections and output a stream of
transposed sinograms. number must be set to the
number of incoming projections to allocate enough memory.

	
"number": uint

	Number of projections.

Warning

This is a memory intensive task and can easily exhaust your
system memory. Make sure you have enough memory, otherwise the process
will be killed.

Tomographic backprojection

	
 class backproject

	Computes the backprojection for a single sinogram.

	
"num-projections": uint

	Number of projections between 0 and 180 degrees.

	
"offset": uint

	Offset to the first projection.

	
"axis-pos": double

	Position of the rotation axis in horizontal pixel dimension of a
sinogram or projection. If not given, the center of the sinogram is
assumed.

	
"angle-step": double

	Angle step increment in radians. If not given, pi divided by height
of input sinogram is assumed.

	
"angle-offset": double

	Constant angle offset in radians. This determines effectively the
starting angle.

	
"mode": enum

	Reconstruction mode which can be either nearest or texture.

	
"roi-x": uint

	Horizontal coordinate of the start of the ROI. By default 0.

	
"roi-y": uint

	Vertical coordinate of the start of the ROI. By default 0.

	
"roi-width": uint

	Width of the region of interest. The default value of 0 denotes full
width.

	
"roi-height": uint

	Height of the region of interest. The default value of 0 denotes full
height.

Forward projection

	
 class forwardproject

	Computes the forward projection of slices into sinograms.

	
"number": uint

	Number of final 1D projections, that means height of the sinogram.

	
"angle-step": float

	Angular step between two adjacent projections. If not changed, it is
simply pi divided by number.

Laminographic backprojection

	
 class lamino-backproject

	Backprojects parallel beam computed laminography projection-by-projection
into a 3D volume.

	
"region-values": int

	Elements in regions.

	
"float-region-values": float

	Elements in float regions.

	
"x-region": GValueArray

	X region for reconstruction as (from, to, step).

	
"y-region": GValueArray

	Y region for reconstruction as (from, to, step).

	
"z": float

	Z coordinate of the reconstructed slice.

	
"region": GValueArray

	Region for the parameter along z-axis as (from, to, step).

	
"projection-offset": GValueArray

	Offset to projection data as (x, y) for the case input data is cropped
to the necessary range of interest.

	
"center": GValueArray

	Center of the volume with respect to projections (x, y), (rotation
axes).

	
"overall-angle": float

	Angle covered by all projections (can be negative for negative steps in
case only num-projections is specified)

	
"num-projections": uint

	Number of projections.

	
"tomo-angle": float

	Tomographic rotation angle in radians (used for acquiring projections).

	
"lamino-angle": float

	Absolute laminogrpahic angle in radians determining the sample tilt.

	
"roll-angle": float

	Sample angular misalignment to the side (roll) in radians (CW is
positive).

	
"parameter": enum

	Which paramter will be varied along the z-axis, from z, x-center,
lamino-angle, roll-angle.

Fourier interpolation

	
 class dfi-sinc

	Computes the 2D Fourier spectrum of reconstructed image using 1D Fourier
projection of sinogram (fft filter must be applied before). There are no
default values for properties, therefore they should be assigned manually.

	
"kernel-size": uint

	The length of kernel which will be used in
interpolation.

	
"number-presampled-values": uint

	Number of presampled values which will be used to calculate
kernel-size kernel coefficients.

	
"roi-size": int

	The length of one side of region of Interest.

	
"angle-step": double

	Increment of angle in radians.

Center of rotation

	
 class center-of-rotation

	Compute the center of rotation of input sinograms.

	
"angle-step": double

	
Step between two successive projections.

	
"center": double

	The calculated center of rotation.

Sinogram offset shift

	
 class cut-sinogram

	Shifts the sinogram given a center not centered to the input image.

	
"center-of-rotation": float

	Center of rotation of specimen.

Phase retrieval

	
 class retrieve-phase

	Computes and applies a fourier filter to correct phase-shifted data.
Expects frequencies as an input and produces frequencies as an output.

	
"method": enum

	Retrieval method which is one of tie, ctf, ctfhalfsine,
qp, qphalfsine or qp2.

	
"energy": float

	Energy in keV.

	
"distance": float

	Distance in meter.

	
"pixel-size": float

	Pixel size in meter.

	
"regularization-rate": float

	Regularization parameter is log10 of the constant to be added to the
denominator to regularize the singularity at zero frequency: 1/sin(x) ->
1/(sin(x)+10^-RegPar).

Typical values [2, 3].

	
"thresholding-rate": float

	Parameter for Quasiparticle phase retrieval which defines the width of
the rings to be cropped around the zero crossing of the CTF denominator
in Fourier space.

Typical values in [0.01, 0.1], qp retrieval is rather independent of
cropping width.

General matrix-matrix multiplication

	
 class gemm

	Computes \(\alpha A \cdot B + \beta C\) where \(A\), \(B\) and \(C\) are input
streams 0, 1 and 2 respectively. \(A\) must be of size \(m\times k\), \(B\)
\(k\times n\) and \(C\) \(m\times n\).

Note

This filter is only available if CLBlast support is available.

	
"alpha": float

	Scalar multiplied with \(AB\).

	
"beta": float

	Scalar multiplied with \(C\).

Segmentation

	
 class segment

	Segments a stack of images given a field of labels using the random walk
algorithm described in 1. The first
input stream must contain three-dimensional image stacks, the second input
stream a label image with the same width and height as the images. Any pixel
value other than zero is treated as a label and used to determine segments
in all directions.

	1

	Lösel and Heuveline, Enhancing a Diffusion Algorithm for 4D Image
Segmentation Using Local Information in Proc. SPIE 9784, Medical
Imaging 2016, http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2506235

Auxiliary

Buffering

	
 class buffer

	Buffers items internally until data stream has finished. After that all
buffered elements are forwarded to the next task.

	
"number": uint

	Number of pre-allocated buffers.

	
"dup-count": uint

	Number of times each image should be duplicated.

	
"loop": boolean

	Duplicates the data in a loop manner dup-count times.

Stamp

	
 class stamp

	Writes the current iteration into the top-left corner.

	
"font": string

	Pango font description, by default set to Mono 9.

	
"scale": float

	Scales the default brightness of 1.0.

Note

This filter requires Pango and Cairo for text layouting.

Loops

	
 class loop

	Repeats output of incoming data items. It uses a low-overhead policy to
avoid unnecessary copies. You can expect the data items to be on the device
where the data originated.

	
"number": uint

	Number of iterations for each received data item.

Monitoring

	
 class monitor

	Inspects a data stream and prints size, location and associated metadata
keys on stdout.

	
"print": uint

	If set print the given numbers of items on stdout as hexadecimally
formatted numbers.

Sleep

	
 class sleep

	Wait time seconds before continuing. Useful for debugging
throughput issues.

	
"time": double

	Time to sleep in seconds.

Display

	
 class cv-show

	Shows the input using an OpenCV window.

	
"min": float

	Minimum for display value scaling. If not set, will be determined at
run-time.

	
"max": float

	Maximum for display value scaling. If not set, will be determined at
run-time.

Sinks

Sinks are endpoints and have at least one input but no output.

File writer

	
 class write

	Writes input data to the file system. Support for writing depends on compile
support, however raw (.raw) files can always be written. TIFF (.tif and
.tiff), HDF5 (.h5) and JPEG (.jpg and .jpeg) might be supported
additionally.

	
"filename": string

	Format string specifying the location and filename pattern of the
written data. It must contain at most one integer format specifier
that denotes the current index of a series. For example,
"data-%03i.tif" produces data-001.tif, data-002.tif and so
on. If no specifier is given, the data is written preferably to a single
file (i.e. multi-tiff, HDF5 data set). If no filename is given the data
is written as-is to stdout.

	
"counter-start": uint

	Sets the counter that replaces the format specifier. Initially, it is
set to 0.

	
"counter-step": uint

	Determines the number of steps the counter replacing the format
specifier is incremented. Initially, it is set to 1.

	
"append": boolean

	Append rather than overwrite if TRUE.

	
"bits": uint

	Number of bits to store the data if applicable to the file format.
Possible values are 8 and 16 which are saved as integer types and 32 bit
float. By default, the minimum and maximum for scaling is determined
automatically, however depending on the use case you should override
this with the minimum and maximum properties. To avoid
rescaling, set the rescale property to FALSE.

	
"minimum": float

	This value will represent zero for discrete bit depths, i.e. 8 and 16
bit.

	
"minimum": float

	This value will represent the largest possible value for discrete bit
depths, i.e. 8 and 16 bit.

	
"rescale": boolean

	If TRUE and bits is set to a value less than 32, rescale values
either by looking for minimum and maximum values or using the values
provided by the user.

For JPEG files the following property applies:

	
"jpeg-quality": uint

	JPEG quality value between 0 and 100. Higher values correspond to higher
quality and larger file sizes.

Memory writer

	
 class memory-out

	Writes input to a given memory location. Unlike input and output tasks this
can be used to interface with other code more directly, e.g. to write into a
NumPy buffer:

from gi.repository import Ufo
import numpy as np
import tifffile

ref = tifffile.imread('data.tif')
a = np.zeros_like(ref)

pm = Ufo.PluginManager()
g = Ufo.TaskGraph()
sched = Ufo.Scheduler()
read = pm.get_task('read')
out = pm.get_task('memory-out')

read.props.path = 'data.tif'
out.props.pointer = a.__array_interface__['data'][0]
out.props.max_size = ref.nbytes

g.connect_nodes(read, out)
sched.run(g)

assert np.sum(a - ref) == 0.0

	
"pointer": ulong

	Pointer to pre-allocated memory.

	
"max-size": ulong

	Size of the pre-allocated memory area in bytes. Data is written up to
that point only.

ZeroMQ publisher

	
 class zmq-pub

	Publishes the stream as a ZeroMQ data stream to compatible ZeroMQ
subscribers such as the zmq-sub source.

	
"expected-subscribers": uint

	If set, the publisher will wait until the number of expected subscribers
have connected.

Auxiliary sink

Null

	
 class null

	Eats input and discards it.

	
"download": boolean

	If TRUE force final data transfer from device to host if necessary.

	
"finish": boolean

	Call finish on the associated command queue.

	
"durations": boolean

	Print durations computed from timestamps on stderr.

PIV filters

Filters related to the PIV particle tracking software.

Ring pattern

	
 class ring-pattern

	This generator is used to create all the patterns that one wants to recognize.
In this case, only ring patterns are generated and the only difference between
each pattern is it’s radii size. The thickness of the rings stays identical no
matter the radii size.

The ring-start and ring-end represent the range of radii used for
the ring generations and are given on a pixel basis. Each of these rings
will have a thickness of ring-thickness pixels. Using a low value for
the ring thickness tends to result in more rings being detected. Ideally
this value should be the same as the actual ring thickness within the image.

	
"ring-start": uint

	Gives the size of the radius of the first ring to be generated. The size
is given on a pixel basis.

	
"ring-step": uint

	Indicates by how much the radii should be increased at each iteration.
The value is given on a pixel basis.

	
"ring-end": uint

	Gives the size of the radius of the last ring to be generated. The size
is given on a pixel basis.

	
"ring-thickness": uint

	Specifies the desired thickness of the generated ring on a pixel basis.

	
"width": uint

	Give x size of output image.

	
"height": uint

	Give y size of output image.

Concatenate

	
 class concatenate-result

	For each image, there are (ring-end - ring-start + 1) / ring-step
streams of data. Each stream represents a set of detected rings. The
concatenate plugin groups these results into one big stream of ring
coordinates. This stream is then passed to a set of post processing
plug-ins that try to remove false positives and find the most accurate ring
possible.

	Input

	A 1D stream. This stream represents the list of all the rings detected for a
certain radius and a certain image. Of course if their are 10 different
radii sizes, then 10 calls to the input buffer will result into a single call
to the output buffer.

	Output

	One list of coordinates, corresponding to all the rings of the current image
being processed.

	
"max-count": uint

	Sometimes for small rings patterns hundreds of rings can be detected due
to the noise. When large amounts of rings are detected, most of them
tend to be false positives. To ignore those rings, set the
max-count. Note that if it is set to a very high value (over 200)
the post processing algorithms might considerably slow down the
software.

	
"ring-count": uint

	The maximum number of rings desired per ring pattern.

Denoise

	
 class denoise

	A temporary background image is computed from the input image. For each
pixel in the input image, the neighbouring pixels are loaded into memory and
then sorted in ascending order. The 30th percentile is then loaded into the
background image. The input image is then subtracted by this background
image. The advantage of this algorithm is to create a new image whose
intensity level is homogeneously spread across the whole image. Indeed, the
objective here is to remove all background noise and keep the rings whose
intensities are always higher than the background noise. This filter later
helps the Hough Transform because when noise will be summed up, the overall
value will be close to zero instead of having a high value if we had not
removed this background noise.

	Input

	A 2D stream. The image taken by the CMOSs camera.

	Output

	A 2D stream. This plug-in computes an average background image of the
input. The output image is then created by subtracting the input image
to this background image.

	
"matrix-size": uint

	This parameter specifies the size of the matrix used when looking for
neighbouring pixels. A bigger value for the matrix size means that more
pixels will be compared at a time. Ideally, the size should be twice as
big as the desired ring-thickness. The ring thickness is the number
of pixels that can be seen on the rings edge. If the size is identical
to or less than the effective ring thickness, pixels within rings in the
image might get removed (i.e. set to 0).

Contrast

	
 class contrast

	It has been noticed in an empirical way that the rings always stand in the
high frequencies of the images, i.e. the pixels with higher intensities.
Moreover, only a small amount of the pixels, around 10%, form all the rings
in the image. Hence a histogram is computed to know where most of the
pixels stand. As a general rule, it was noticed that every pixels that are
below the peak in the histogram are simply background noise. This is why
each pixel below this peak is set to 0. To make the ring stand out a bit
more a non linear mapping is made to enhance the bright pixels even more.
By using the imadjust algorithm as described in matlab, we compute the new
pixel values using the following formula : \(f'(x, y) =
\left(\frac{f(x, y) - low}{high - low}\right)^\gamma\) Where \(f'\) is
the output image, \(f\) is the input image, \(high\) is the maximum value
and \(low\) is the smallest value. \(\gamma\) is a value less than 1, and
is what allows to get a non linear mapping and more values near the high
intensities.

	Input

	A 2D stream. The image is the previously denoised image.

	Output

	A 2D stream. All low intensities have been removed and the rings
contrast has been increased.

	
"remove-high": boolean

	When this parameter is set true, every pixel in the histogram that lie
between half of the distance of the peak and the maximum and the maximum
value are replaced by a value of 0. This can be useful when the image
has lots of bright regions which cause a lot of noise and hence
generating many false positives.

Ordfilt

	
 class ordfilt

	The plug-in matches a pattern over each pixel of the image and computes a value
representing the likeliness for that pixel to be the center of that pattern.
To achieve this, every pixel that lie under the pattern are loaded into memory
and then sorted. Once the array is sorted two values are picked to compute the
rings contrast and the rings average intensities. Currently we pick the 25th
and 50th percentile pixel value. The following formula is then applied to get
the new pixel value:

\[\begin{align}\begin{aligned}contrast = 1 - (high_p - low_p)\\intensity = \frac{(high_p + low_p)}{2}\\f'(x, y) = intensity \cdot contrast\end{aligned}\end{align} \]

\(high_p\) is the 50 percentile pixel value. \(low_p\) is the 25th
percentile pixel value. This formula is based on the fact that rings are always
brighter, hence the more bright the pixels the more likely we have a ring.
Moreover, the pixels forming the ring should not vary in intensity, i.e.
the low and high percentile should have the same value, by computing the
difference we can compute a good contrast value of the ring. The resulting
image therefor takes into consideration both the contrast of the ring and
its intensity.

	Input 1

	A 2D stream. The previously contrasted image.

	Input 2

	A 2D stream. An image representing a pattern to match. In our case, the
pattern is a ring.

	Output

	A 2D stream. An image where each pixel value represents the likeliness
for that pixel to be the center of the current pattern passed in input1.

Particle filtering

	
 class filter-particle

	This algorithm is based on two-pass method to detect blobs. A blob, is a set
of bright pixels that form a bright spot on the image. Each pixel in a blob
has sufficiently high enough value, based on a threshold, such as that pixel
is a candidate to being the center of the ring-pattern being currently
searched for. For each of these blobs, a unique \((x, y, r)\) value is
computed. Where \((x, y)\) is the center of the blob of pixels and
\(r\) is the radius of the current ring-pattern being searched for.

	Input

	A 2D stream. The image generated by the ordfilt, where each pixel value
represents the likeliness of it to become the center of a ring.

	Output

	A 1D stream. An array of \((x, y, r)\) coordinates representing the list
of currently detected rings.

	
"threshold": float

	A value between 0 and 1 representing a threshold relative to the images
maximum value. Each pixel of the image whose value is greater than
\(threshold \cdot \max(Image)\) is considered as a candidate to being a
center of a ring.

	
"min": float

	Gives the minimum value a pixels needs to have to be considered a
possible candidate.

OpenCL default kernels

This section lists all kernel functions that are available to the
opencl filter if no filename is specified.

	
void fix_nan_and_inf()

	Sets element to 0.0 if it is NaN or Inf.

	
void absorptivity()

	Computes \(f(x) = -log(x)\).

	
void nlm_noise_reduction()

	Smooths data within a local neighbourhood.

	
void diff()

	Computes \(f(x, y) = x - y\).

OpenCL reduction default kernels

This section lists all kernel functions that are available to the
opencl-reduce filter if no filename is specified. These kernels
are supposed to be used for the kernel argument.

	
void minimum()

	Computes the minimum of each pixel in the stream.

	
void maximum()

	Computes the maximum of each pixel in the stream.

	
void sum()

	Computes the sum of each pixel in the stream.

These kernels are supposed to be used in the finish argument:

	
void divide()

	Divides each pixel by the stream count. Together with sum this can be
used to compute the average, i.e.:

ufo-launch .. ! opencl-reduce kernel=sum finish=divide ! ..

Third party contributions

The filters described in this section come from third-party groups and must be
enabled explicitly during the configuration process either by calling CMake
with:

cmake <src-dir> -DWITH_CONTRIB=ON

or setting the WITH_CONTRIB flag in the ccmake user interface.

Filters

	Contributions by Serge X. Cohen
	Point-based transformation

	Auxiliary

Contributions by Serge X. Cohen

These filters were initially written with X-ray tomographic processing
in mind. Still they are of a general usage as long as input are image.

Point-based transformation

Rejecting outliers in 3D

	
 class med-mad-reject

	For each pixel of a frame within a stream, makes a 3x3x3 box (that
is, 3x3 box including previous, current and following frames) and
compute the median (med) and median absolute deviation (mad). If
the value of the central pixel is too far from the median
(relative to the mad) it is rejected and its value is replaced by
the median value of the box.

	
"threshold": float

	When abs(px-med) > threshold*mad the pixel value (noted px)
is replaced by med.

Rejecting outliers in 2D

	
 class med-mad-reject-2d

	For each pixel of a frame make a square box centred on the pixel and
compute the median (med) and median absolute deviation (mad). If
the value of the central pixel is too far from the median
(relative to the mad) it is rejected and its value is replaced by
the median value of the box.

	
"box-size": uint

	The edge size of the box to be used (in px). This should be an
even number so that it can be centred on a pixel.

	
"threshold": float

	When abs(px-med) > threshold*mad the pixel value (noted px)
is replaced by med.

OpenCL one-liner computation

	
 class ocl-1liner

	The aim is to enable the implementation of simple, nevertheless
multiple input, computation on the basis of one work-item per pixel
of the frame. The filter accepts arbitrary number of inputs, as
long as more than one is provided. The output has the same size as
the first input (indexed 0) and the generated OpenCL kernel is run
with one work item per pixel of the output. The user provides a
single computation line and the filter places it within a skeleton
to produce an OpenCL kernel on the fly, then compiles it and uses
it in the current workflow.

In the kernel the following variables are defined :
sizeX and sizeY are the size of the frame in X and Y directions;
x and y are the coordinate of the pixel corresponding to the
current work item;
in_x are the buffer holding the 0..(n-1) input frames;
out is the buffer holding the output of the computation.

In the computation line provided through one-line the
pixel corresponding to the current work item is px_index. Also
reference to the pixel values can use multiple syntax :
out[px_index], in_0[px_index], … in_x[px_index] or as
shortcut (indeed macro of those) out_px, in_0_px,
… in_x_px. Finally if one wants to have finer control over the
pixel used in the computation (being able to use neighbouring pixel
values) one can use the IMG_VAL macro as such IMG_VAL(x,y,out),
IMG_VAL(x,y,in_x) …

	
"one-line": string

	The computation to be performed expressed in one line of
OpenCL, no trailing semi-column (added by the skeleton). To
avoid miss-interpretation of the symbols by the line parser of
ufo-launch it is advisable to surround the line by single
quotes (on top of shell quoting). One example (invoking through
ufo-launch) would be “‘out_px = (in_0_px > 0) ? sqrt(in_0_px)
: 0.0f’” .

	
"num-inputs": uint

	The number of input streams. This is mandatory since it can not
be inferred as it is the case by the OpenCL task.

	
"quiet": boolean

	Default to true, when set to false the dynamically
generated kernel sources are printed to the standard output
during the task setup.

Auxiliary

Producing simple statistics on a stream

	
 class stat-monitor

	Inspects a data stream in a way similar to the monitor
task but also computing simple statistics on the monitored frame stream:
min, max, mean and standard deviation of each frame is computed. To limit
truncation errors the OpenCL kernel uses fp64 operations if those are
supported by the used OpenCL device, otherwise it falls back to use fp32
arithmetic which might incurs significant truncation errors on images of
large dimensions.

	
"filename": string

	When provided the tabulated statistics are output the file
with this filename rather than displayed to standard output.

	
"trace": boolean

	When set to true will print processed frame index to
standard output. This is useful if the task is placed in before
a task somehow hiding the number of processed frames (in a
complex workflow). Defaulting to false

	
"quiet": boolean

	When set to true will not print the frame
monitoring. Defaulting to false to be as close as possible
to the output of the monitor task.

	
"print": uint

	If set print the given numbers of items on stdout as hexadecimally
formatted numbers (taken from monitor task).

Examples

CT Pre-processing

Flat field correction

To remove fixed pattern noise that stems from the optical system caused by
imperfections in the scintillator screen or an inhomogeneous beam and
thermal noise from the detector sensor, you can use flat field correction.
This assumes that you have a set of dark fields acquired with the shutter
closed, a set of flat fields acquired without the sample in the beam and the
projections with samples. If the beam intensity shifts over time it can be
beneficial to acquire flat fields before and after the projections and
interpolate between them.

In the simplest case you connect the projection stream to input 0, the dark
field to input 1 and the flat field to input 2 of
flat-field-correct:

ufo-launch \
 [\
 read path=projections*.tif, \
 read path=dark.tif, \
 read path=flat.tif \
] ! \
 flat-field-correct !
 write filename=corrected-%05i.tif

If you have a stream of flats and darks you have to reduce them either by
connection them to average or stack →
flatten with the mode set to median. Suppose, we want to
average the darks and remove extreme outliers from the flats, we would call

ufo-launch \
 [\
 read path=projections*.tif, \
 read path=darks/ ! average, \
 read path=flats/ ! stack number=11 ! flatten mode=median \
] ! \
 flat-field-correct !
 write filename=corrected-%05i.tif

If you have to interpolate between the flats taken before and after the sample
scan, you would connect the first flat to input 0 and the second to input 1 of
interpolate and set the number property to the number of
expected projections:

ufo-launch \
 [\
 read path=projections*.tif, \
 read path=darks/ ! average, \
 [\
 read path=flat-before.tif, \
 read path=flat-after.tif \
] ! interpolate number=2000
] ! \
 flat-field-correct !
 write filename=corrected-%05i.tif

If you want to avoid the automatic absorption correction you have to set
absorption-correct to FALSE and if you want to ignore NaN and Inf values in
the data, set fix-nan-and-inf to FALSE.

Sinograms

The reconstruction pipelines presented in the following section assume sinograms
as input in order to parallelize along slices. To transpose a stream of
(corrected) projections connect it to transpose-projections and
set number to the number of expected projections. Note, that the
transposition happens in main memory and thus may exhaust your system resources
for a larger number of big projections. For example, to transpose 2048
projections, each at a size of 2048 by 2048 pixels requires 32 GB of RAM.

CT Reconstruction

Filtered backprojection

To reconstruct from sinograms using the analytical filtered backproject method
[KaSl01], you have to feed the sinograms into fft →
filter → ifft → backproject to obtain
slices one by one:

ufo-launch \
 dummy-data width=$DETECTOR_WIDTH height=$N_PROJECTIONS number=$N_SLICES ! \
 fft dimensions=1 ! \
 filter ! \
 ifft dimensions=! ! \
 backproject axis-pos=$AXIS ! \
 null

Direct Fourier inversion

In this example we use the Fourier slice theorem to obtain slices directly from
projection data [KaSl01] and use a sinc kernel to interpolate in the Fourier
space. To reconstruct, you have to feed the sinograms into zeropad
→ fft → dfi-sinc → swap-quadrants →
ifft → swap-quadrants

ufo-launch \
 dummy-data width=$DETECTOR_WIDTH height=$N_PROJECTIONS number=$N_SLICES ! \
 zeropad center-of-rotation=$AXIS ! \
 fft dimensions=1 auto-zeropadding=0 ! \
 dfi-sinc ! \
 swap-quadrants ! \
 ifft dimensions=2 ! \
 swap-quadrants ! \
 null

Data distribution

To distribute data in a compute network you can use the zmq-pub
sink and zmq-sub generator. For example, to read data on machine A
and store it on machine B, you would run

ufo-launch read path=/data ! zmq-pub

on machine A and

ufo-launch zmq-sub address=tcp://hostname-of-machine-a ! write

on machine B. Note that by default zmq-pub publishes data as soon
as it receives it, thus some of the data will get lost if the
zmq-sub is run after zmq-pub. You can prevent this
by telling the zmq-pub task to wait for a certain number of
subscribers to subscribe:

ufo-launch read path=/data ! zmq-pub expected-subscribers=1

References

	KaSl01(1,2)

	Kak, A. C., & Slaney, M. (2001). Principles of Computerized Tomographic Imaging (Philadelphia, PA: SIAM).

ChangeLog

Version 0.16.0

Enhancements:

	filter: Enable scaling in ramp_fromreal

	opencl: add options property to set build opts

	opencl: allow overriding PATCH_ and SEARCH_RADIUS

	opencl: add diff kernel

	nlm: use sigma if passed as an option

	nlm: don’t scale sigma arbitrarily

	backproject: lift angle-step and -offset limits

	read: support single plane RGB data

	write: support RGB TIFFs and JPEGs

	write: do not require fmt specifier for jpeg

	bin: support 3D binning as well

	fft: add debug message showing underlying FFT lib

	Do transpose on GPU

Fixes:

	Fix #153: handle 64 bit TIFFs gracefully

	Fix #159: add boolean rescale option

	Fix #161: add test to prove things work

	Fix #162: make use of new buffer layout API

	Fix #163: return raw-height correctly

	Fix #165: use current get_kernel API

	Fix #166: propagate OpenCL errors if possible

Breaks:

	detect-edge: rename “type” to “filter”

New filters:

	Add cone beam reconstructor

	Add tile task

	Add unsplit task

	Add map-color task

	Add gradient filter

	Add zmq-pub and zmq-sub tasks

Version 0.15.1

Fixes:

	#153: do not crash with 64 bit floating point TIFFs

	Use specific OpenCV 2 header file in an OpenCV 3 environment

Version 0.15.0

Enhancements:

	Added a manual section showing basic image processing examples

	Added a manual section to list default kernels usable with opencl and
opencl-reduce

	backproject: unroll loop for P100, Quadro M6000, GTX 1080 TI and Tesla K20XM

	cv-show: use unique window name to allow multiple viewers

	dfi: clean up and simplify reflection code

	read: avoid file open check if successful

	read: add lazy timeout-based reading

	retrieve-phase: remove unused normalize parameter

	retrieve-phase: untangle macro and ?: mess

	stat-monitor: clean up and remove dead code

	stitch: minor cleanups and correct kernel release

	swap-quadrants: simplified code

	write: warn if no format spec is given for jpeg

	Fix #144: document swap-quadrants

Fixes:

	camera: fix linking with libuca

	cv-show: fix compilation with older g++ compilers

	dfi: fix wrong warning about even sample number

	dummy-data: lift number limit

	opencl: kernel name cannot be NULL

	Fix #149: image2d_t is always global

	Fix #146: use gnu99 instead of c99

	Fix #133: off-by-one cropping is bad

Breaks:

	Moved nlm kernel from nlm.cl to opencl.cl

	Remove unused default.cl

New filters:

	Added cv-show viewer

	Added circular mask filter

	Added opencl-reduce

	Added projection filter bh3

	Added filter to remove outliers

Version 0.14.1

Fixes:

	Let meson build all the tasks that CMake could before

	Check if Python is actually available in order to generate lamino kernels

	Fix install documentation

	Fix compilation with MacOS compilation and Python 3

	memory-in: cast pointer to target type

	write: fix problem with generated filenames that are not incremented

Version 0.14.0

Enhancements:

	Support meson build system alongside CMake

	Suppress tiff writing warnings

	dummy-data: add random-metadata flag

	interpolate: use GPU instead of OpenMP which is an order of magnitude faster

	lamino: allow setting addressing mode

	monitor: output metadata values as well

	raw-read: split offset in pre and post offsets

	write: add counter-start and counter-step

	write: add minimum/maximum to control conversion

	null: allow printing durations from timestamps

Fixes:

	lamino: prevent volume shifting in center kernel

	Fix #133: allow crop position with specifying dims

Breaks:

	Replaced stdout filter with standard write module

	write: rename quality property to jpeg-quality

New filters:

	Add rotate filter

	Add stitch task

	Add interpolate-stream task

	Add correlate-stacks task

	Add cut task

	Add stamp filter to print current iteration into output buffer

Version 0.13.0

Enhancements:

	Added infrastructure to “stage” filter contributions by third parties. To
enable building it the WITH_CONTRIB option must be set explicitly to ON.

Fixes:

	write: call conversion only once

	read: fix segfault with start too large

	read: fix dumping to JSON

	Fix compilation and installation on MacOS

	Fix #128: prevent segfault with start parameter

	Do not compile ufo-priv.c for each task thus saving compile and link time

	Add documentation for undocumented tasks

New contributed filters by Serge X. Cohen (Synchrotron SOLEIL):

	Add MedMadReject median value rejection in 3D

	Add MedMadReject2D median value rejection in 2D

	Add Ocl1Liner to compute basic OpenCL arithmetics

	Add StatMonitor to output stream statistics

Version 0.12.0

Enhancements:

	Fortify source and enable large file support

	Re-arrange filter documentation

Fixes:

	Fix #127: use enums where possible

	Document the filter task

	Fix potential errors found with static analysis

	stdin: use gsize to avoid LFS problems

	dfi-sinc: do not call exit()

	raw/read: fix type translation for raw-offset

Breaks:

	metaballs: create filled balls rather than circles

	metaballs: remove run-infinitely and fps props

	filter: use enum instead of type-unsafe string

	loop: rename ::count to ::number

New filters:

	Add binarization filter

	Add basic segmentation filter

Version 0.11.1

Fixes:

	Fix #124: build and install oclfft optionally

	Use OLD behaviour for CMP0046

	Use G_MAXSIZE instead of ULLONG_MAX

	Include oclfft deps dir only if enabled

	filter: link FFT libs

	ifft: remove unused/wrong imports

	raw: do not ignore return value of fread

	transpose: fix warning if SSE is not possible

	Add license statements where missing

	Link against m unconditionally

Version 0.11.0

Enhancements:

	Add option to build Sphinx manual

	Improved filter documentation

	Increase robustness of OpenCL kernels by using correct type everywhere

	Make AMD clFFT optional

	backproject: improve performance on GTX Titan

	rescale: allow setting absolute width and height

	camera: allow passing properties to camera

	camera: simplify readout mechanism

	dummy-data: opt-in for initialization using init

Fixes:

	Link only to required dependencies

	Do not link oclfft unconditionally

	zeropad: fix for centers < half width

	Fix #121: use correct exit condition

	Set std=c99 only on C source files

	oclfft: link against UFO

	rescale: remove debug output

	lamino-backproject: fix for small max workgroups

Breaks:

	dummy-data: remove bitdepth property

New filters:

	Add GEMM matrix multiplication using CLBlast

	Add bin filter to bin pixel values

Version 0.10.0

Enhancements:

	Restructured FFT-based filters to use a common code base

	filter: Use real space ramp by default

	crop: add from-center property

	hdf5: whitelist .hdf5 and .nxs extensions

Fixes:

	camera: do not convert 32 bit float data

	EDF: fix problem parsing Frelon EDF data

	Fix #117: fail gracefully if file can’t be written

	edf reader: Allow 512-multiple header size

	Fix reading 32 bit float raws as unsigned int

Breaks:

	read: renamed enable-conversion → convert

	null: renamed force-download → download

New filters:

	Add MemoryIn generator

	Add MemoryOut sink

	Add stdin generator

	Add stdout sink

	Add laminographic backprojection

	Add 1D stripe filter

	Add sleep task for debugging purposes

Version 0.9.0

Enhancements:

	backproject: reconstruct region-of-interest

	backproject: loop unroll on GTX Titan Black

	filter: generalize filter types

	read: allow overriding type detection

	read: read as many bytes as expected in raw mode

	map-slice arbitrary number of input data

	monitor: add print property to show data

Fixes:

	Fix ramp filter computation and mirroring

	Fix two dimensional batch processing of FFT and IFFT

	Fix segfault caused by double-freeing kernel

	opencl: fix copying dimension property

	read: fix segfault reading big-endian .edf

	fbp: Use number of projs to compute angle step

	dfi: add angle-step property

	blur: free allocated OpenCL buffers

	slice: slice correct number of input items

	stack: stack every [number] inputs

New filters:

	Add flip task

	Add clip task

	Add loop task

	Add refeed task

	Add merge task

	Add basic raw reader

Version 0.8.0

Major changes:

	Read changed “end” property back to “number”

	Renamed downsample filter to rescale

	Renamed cut-roi filter to crop

	null: added “finish” property to call clFinish()

	filter: added Faris-Byer type filter coefficients

	ifft: added crop-height property

	Removed possibility to disable building plugins

New filters:

	Add calculate task

	Add new monitor task

	Add edge detection filter

	Added HDF5 reader and writer

	Added raw writer

	Added JPEG writer

Version 0.7.0

This release breaks badly with all previous version because we renamed several
filters and properties to clean up inconsistencies.

Major changes include:

	Integration tests have been moved to core

	writer: allow 8 and 16 bit uint output

	reader: support Multi EDF files

	reader: add y-step parameter

	reader: from:to:step selection of files

	flatfieldcorrection: add “dark-scale” property

New filters:

	Import uPIV related filters by Alexandre Lewkowicz

	Add pad to add zero padding

	Add slice mapper to arrange input as a single grid

	Add inplace flatten task for sum, min and max

	Add interpolation task to interpolate between two streams

	Add flatten task based on median sort

	Add stack task to create a volume from 2D series

	Add transpose task to rotate data

	Add measure task to measure image metrics

	Add PolarCoordinates task

	Integration of UfoIR algebraic reconstruction tasks

	Add median noise filter

	Add slice task to cut volumes into 2D data stream

	Add stripe removal task

	Add phase retrieval filter

Version 0.6.0

Changes

	Added angle offset parameter to backproject filter.

	Fix backprojection for NaN in input

	Fix LUT computation resulting in wrong reconstructions.

	Install kernel files into ${datadir}/ufo as required by ufo-core 0.6.

New filters

	“generate”: takes width, height and depth parameters as well as a number that
is produces with the specified dimensions.

	“downsample”: reduce the size of an image by an integer

Copyright

Index

 A
 | D
 | F
 | M
 | N
 | S

A

 	
 	absorptivity (C function)

D

 	
 	diff (C function)

 	
 	divide (C function)

F

 	
 	fix_nan_and_inf (C function)

M

 	
 	maximum (C function)

 	
 	minimum (C function)

N

 	
 	nlm_noise_reduction (C function)

S

 	
 	sum (C function)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 UFO Tasks Reference

 		
 Installation

 		
 Generators

 		
 File reader

 		
 Memory reader

 		
 ZeroMQ subscriber

 		
 UcaCamera reader

 		
 stdin reader

 		
 Metaball simulation

 		
 Data generation

 		
 Filters

 		
 Point-based transformation

 		
 Binarization

 		
 Clipping

 		
 Masking

 		
 Arithmetic expressions

 		
 Statistics

 		
 Generic OpenCL

 		
 Spatial transformation

 		
 Transposition

 		
 Rotation

 		
 Flipping

 		
 Binning

 		
 Rescaling

 		
 Padding

 		
 Cropping

 		
 Cutting

 		
 Tiling

 		
 Swapping quadrants

 		
 Polar transformation

 		
 Stitching

 		
 Multi-stream

 		
 Interpolation

 		
 Subtract

 		
 Correlate

 		
 Filters

 		
 Median

 		
 Edge detection

 		
 Gaussian blur

 		
 Gradient

 		
 Stream transformations

 		
 Averaging

 		
 Reducing with OpenCL

 		
 Statistics

 		
 Slicing

 		
 Stacking

 		
 Merging

 		
 Slice mapping

 		
 Color mapping

 		
 Splitting channels

 		
 Fourier domain

 		
 Fast Fourier transform

 		
 Frequency filtering

 		
 1D stripe filtering

 		
 Zeropadding

 		
 Reconstruction

 		
 Flat-field correction

 		
 Sinogram transposition

 		
 Tomographic backprojection

 		
 Forward projection

 		
 Laminographic backprojection

 		
 Fourier interpolation

 		
 Center of rotation

 		
 Sinogram offset shift

 		
 Phase retrieval

 		
 General matrix-matrix multiplication

 		
 Segmentation

 		
 Auxiliary

 		
 Buffering

 		
 Stamp

 		
 Loops

 		
 Monitoring

 		
 Sleep

 		
 Display

 		
 Sinks

 		
 File writer

 		
 Memory writer

 		
 ZeroMQ publisher

 		
 Auxiliary sink

 		
 Null

 		
 PIV filters

 		
 Ring pattern

 		
 Concatenate

 		
 Denoise

 		
 Contrast

 		
 Ordfilt

 		
 Particle filtering

 		
 OpenCL default kernels

 		
 OpenCL reduction default kernels

 		
 Third party contributions

 		
 Filters

 		
 Contributions by Serge X. Cohen

 		
 Examples

 		
 CT Pre-processing

 		
 Flat field correction

 		
 Sinograms

 		
 CT Reconstruction

 		
 Filtered backprojection

 		
 Direct Fourier inversion

 		
 Data distribution

 		
 ChangeLog

 		
 Version 0.16.0

 		
 Version 0.15.1

 		
 Version 0.15.0

 		
 Version 0.14.1

 		
 Version 0.14.0

 		
 Version 0.13.0

 		
 Version 0.12.0

 		
 Version 0.11.1

 		
 Version 0.11.0

 		
 Version 0.10.0

 		
 Version 0.9.0

 		
 Version 0.8.0

 		
 Version 0.7.0

 		
 Version 0.6.0

 		
 Changes

 		
 New filters

 		
 Copyright

_static/up-pressed.png

_static/up.png

_static/plus.png

